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Abstract 
States are required to have access to annual average daily traffic (AADT) for all public 
paved roads, including non-federal aid system (NFAS) roadways. The expectation is to 
use AADT estimates in data-driven safety analysis. Because collecting data on NFAS 
roads is financially difficult, agencies are interested in exploring affordable ways to 
estimate AADT. The goal of this project was to determine the accuracy of AADT estimates 
developed from alternative data sources and quantify the impact of AADT on safety 
analysis. The researchers compared 2017 AADT data provided by the Texas and Virginia 
Departments of Transportation against probe-based AADT estimates supplied by 
StreetLight Data Inc. Further, the research team developed safety performance functions 
(SPFs) for Texas and Virginia and performed a sensitivity analysis to determine the 
effects of AADT on the results obtained from the empirical Bayes method that uses SPFs. 
The results showed that the errors stemming from the probe AADT estimates were lower 
than those reported in a similar study that used 2015 AADT estimates. The sensitivity 
analysis revealed that the impact of AADT on safety analysis mainly depends on the size 
of the network, the AADT coefficients, and the overdispersion parameter of the SPFs. 
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Introduction 
The Federal Highway Administration (FHWA) requires states to report annual average daily traffic 
(AADT) through the Highway Performance Monitoring System for all federal-aid roads [1]. In 
March 2016, the United States Department of Transportation published the Highway Safety 
Improvement Program Final Rule [2]. According to the new Final Rule, states are required to have 
access to AADT along with other data elements for all public paved roads, including non-federal 
aid system (NFAS) roadways that include three roadway functional classes: rural minor collectors 
(6R), urban local roads (7U), and rural local roads (7R). States must have access to AADT data by 
September 30, 2026. The general expectation is to use AADT estimates in data-driven safety 
analysis and adopt advanced safety performance measures.  

Most Departments of Transportation (DOTs) tend to focus their traffic data collection efforts on 
high-volume roads that typically pose significant safety challenges compared to NFAS roads. The 
latter account for 75% of the total roadway mileage in the US [3] and therefore, conducting an 
extensive number of short-term counts (STCs) on NFAS roads is financially difficult. Many 
agencies have raised concerns regarding the use of their limited budgets for data collection 
purposes on NFAS roads.  

Because of these challenges, states are interested in exploring affordable ways to collect data and 
develop AADT estimates that are appropriate for use in safety analysis. Over the last few years, 
there has been an increasing interest in exploring whether passively collected data from mobile 
devices (e.g., smartphones, personal and commercial navigation devices, and fleet monitoring 
systems) that are already in the traffic stream can be used along with other types of data (e.g., 
census data) to estimate accurate traffic volumes. To address this need, the authors pursued two 
research objectives:  

• Determine the accuracy of AADT estimates developed for NFAS roads from alternative 
data sources such as probe and census data. StreetLight Data Inc. (SLD), a third-party 
data vendor, provided the probe-based AADT estimates that were used in this project.  

• Quantify the impact of AADT estimation errors on data-driven safety analysis, such as 
network screening, which is described in the Highway Safety Manual [4]. The purpose of 
network screening is to scan the transportation network and rank sites from most to least 
likely to realize a reduction in crash frequency by implementing one or more safety 
treatments. 

To address these objectives, the researchers performed the following activities: 

• Gathered crash, traffic, and roadway data for NFAS roads in Texas and Virginia, and 
integrated them with probe-based AADT estimates provided by SLD. 

• Compared AADT values derived from permanent traffic stations and STCs against SLD 
AADT estimates.  
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• Developed safety performance functions (SPFs) for NFAS roads in Texas and Virginia.  
• Conducted a sensitivity analysis to determine the impact of AADT estimation errors on 

safety analysis that involved applying the Empirical Bayes (EB) method that uses SPFs.  
 

Methodology 
This section describes the methodology that the researchers followed to determine the accuracy of 
SLD AADT estimates and quantify the impact of AADT estimation errors on safety analysis. 

AADT Accuracy Measures  
To quantify the accuracy of SLD AADT estimates, the authors calculated the following metrics: 

𝑀𝑀𝑀𝑀𝑀𝑀 (𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖) = 1
𝑛𝑛
∑ �𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝐸𝐸 − 𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴𝑂𝑂𝑂𝑂𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝐸𝐸𝐸𝐸,𝐸𝐸�𝑛𝑛
𝐸𝐸=1   (1) 

𝑀𝑀𝐴𝐴𝑀𝑀 (𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖) = 1
𝑛𝑛
∑ ��𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝐸𝐸 − 𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴𝑂𝑂𝑂𝑂𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝐸𝐸𝐸𝐸,𝐸𝐸��𝑛𝑛
𝐸𝐸=1  (2) 

𝑀𝑀𝐴𝐴𝑀𝑀𝑀𝑀 (%) = 1
𝑛𝑛
∑ �

�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝐸𝐸−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝐸𝐸𝐸𝐸,𝐸𝐸�

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝐸𝐸𝐸𝐸,𝐸𝐸
�𝑛𝑛

𝐸𝐸=1 × 100 (3) 

𝐴𝐴𝐴𝐴𝐴𝐴 (%) = 1
𝑛𝑛
∑ �𝑆𝑆𝐸𝐸𝐸𝐸𝑛𝑛𝐸𝐸𝐸𝐸𝑂𝑂𝐸𝐸 𝐴𝐴𝐸𝐸𝑂𝑂𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷𝑛𝑛(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝐸𝐸,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝐸𝐸𝐸𝐸,𝐸𝐸)

(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝐸𝐸+𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝐸𝐸𝐸𝐸,𝐸𝐸)/2
�𝑛𝑛

𝐸𝐸=1 × 100 (4) 

Where: 

MSD   =  mean signed difference. 

MAD   =  mean absolute difference. 

MAPE   =  mean absolute percent error. 

ACV  =  average coefficient of variation. 

AADTEstimated, i =  SLD AADT estimate for the ith site.  

AADTObserved, i =  observed AADT or the ith site.  These AADT values were provided by the 
Texas DOT (TxDOT) and the Virginia DOT (VDOT). 

n  =  total number of sites included in the evaluation. 

In addition to these measures, the research team calculated the median absolute percent error 
(APE), as it is generally considered more appropriate than the MAPE in situations where outliers 
exist in the data or the data are not normally distributed. The accuracy measures were calculated 
at different levels of aggregation—such as by state, functional class, rural/urban code, AADT 
range—as well as a combination of these variables (e.g., functional class combined with 
rural/urban code).  
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Safety Impact Analysis 
The safety impact analysis involved two steps. In the first step, the research team developed 
SPFs for NFAS roads in Texas and Virginia. In the second step, the authors conducted a 
sensitivity analysis by repeatedly applying the EB and the full Bayesian (FB) method using the 
SPFs developed in Step 1.  

Step 1 – SPF Development 
SPFs are typically negative binomial (NB) models (i.e., equations) that predict the mean crash 
frequency at a given facility as a function of AADT and roadway characteristics such as segment 
length, shoulder width, etc. A baseline SPF is often developed using AADT and segment length: 

CPredicted = exp[β0 + β1 × ln(L) + β2 × ln(AADT)]  (5) 

Crashes (N) can be predicted by multiplying three components: predicted crash frequency 
(CPredicted) from baseline SPF, a series of crash modification factors (CMFs), and a calibration 
factor, C: 

N = CPredicted × ∏CMF × C  (6) 

The authors developed separate SPFs for Texas and Virginia. State- and local-specific SPFs are 
generally preferred [4] over “global” SPFs provided in the Highway Safety Manual or other 
sources. The two state datasets that the researchers compiled had significant differences in terms 
of size (i.e., number of roadway segments) and number of independent variables that could be 
included in the SPFs. NFAS roads usually have unique features such as limited mobility, shorter 
segments, and fewer crashes (compared to higher functional class roads), which make it 
challenging to accurately quantify their safety performance by applying “global” SPFs that may 
have been developed for different state transportation networks. 

SPFs for Texas – Traditional NB Models With and Without Decision Trees 
The authors used the Texas dataset to investigate whether decision trees can improve the SPF 
prediction accuracy. Conventional SPFs generally examine the mean effects of key contributing 
factors and ignore subgroups that may have different characteristics. Due to this generalized 
approach, they fail to capture specific subgroup effects and influential factors within a subset of 
roadway segments or intersections. New modeling approaches are needed to tackle the 
complexities of crash data and improve the accuracy of the predictions. Decision tree rule-based 
modeling is one of several emerging approaches that can address these limitations. These methods 
can identify subgroup effects without imposing any prior assumption or group of assumptions [5]. 
The rules provide a subset of SPFs that represent subsets of roadway segments or intersections by 
not only considering interactions between the contributing factors but also their ranges. Recursive 
partitioning is one of the simplest rules-based modeling techniques.  

In this study, the authors used two open-source R (rpart, rattle) packages [6, 7] to develop decision 
trees using data from Texas. Then, traditional SPFs (NB models) were developed for each roadway 
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group (or cluster) that was produced from the decision trees. The decision tree-based SPFs were 
compared against functional class-specific SPFs that were developed without dividing the 
population into clusters (i.e., without using decision trees). 

SPFs for Virginia – Traditional and Non-Traditional NB Models Using FB Method 
Using data from Virginia and by applying the FB method, the authors developed traditional and 
non-traditional SPFs. The latter were developed to examine how different functional forms and 
dispersion structures can improve the performance of the traditional SPFs.  

Functional Form of Traditional NB Models Using FB Method 
In traditional NB models, there is a quadric association between the mean function and the variance 
through the over-dispersion parameter. This relationship is a natural result of the traditional 
formulation of the NB model. Therefore, modifying this relationship would lead to the 
transformations of the NB formulation. Three different NB parametrization of NB model, NB1, 
NB2, and NBP, corresponding to three different variance structures, have been proposed and 
examined in the literature [8]. These structures can be written as follows: 

𝑁𝑁𝑁𝑁1:        𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦𝐸𝐸) = 𝜇𝜇𝐸𝐸 + 𝜇𝜇𝐸𝐸
𝜙𝜙

  (7) 

𝑁𝑁𝑁𝑁2:        𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦𝐸𝐸) = 𝜇𝜇𝐸𝐸 + 𝜇𝜇𝐸𝐸
2

𝜙𝜙
  (8) 

𝑁𝑁𝑁𝑁𝑀𝑀:        𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦𝐸𝐸) = 𝜇𝜇𝐸𝐸 + 𝜇𝜇𝐸𝐸
𝑃𝑃

𝜙𝜙
  (9) 

Where, 𝜙𝜙 is the inverse dispersion parameter, and 𝜇𝜇𝐸𝐸 is the mean crash frequency. Among these 
structures, NBP offers the most flexible association between the mean and the variance by 
including a learnable parameter (P) to the model. Using data from Virginia, the authors developed 
three traditional NB models (NB1, NB2, NBP) for each functional classification (6R, 7R, and 7U), 
as well as for all NFAS roads (as one group). These models were compared to non-traditional NB 
Lindley models, as described below. 

Negative Binomial Lindley Models Using FB Method 
Traditional NB models can account for over-dispersion effects, but in the case of crash 
distributions with long tails and a large number of zeros, NB is not flexible enough to capture all 
the variability in the data. NFAS roads typically have lower crash rates (compared to higher-
volume roads), leading to a large number of zero responses and long tails in their crash distribution. 
The Negative Binomial Lindley (NB-L) model is a mixture of the NB and Lindley distribution, 
which offers a more flexible structure to the traditional NB model through the Lindley parameter. 
NB-L was proposed by [9] and then generalized and examined by [10, 11] in the field of crash 
analysis. The hierarchical representation of the NB-L model can be written as follows: 

𝑀𝑀(𝑌𝑌 = 𝑦𝑦, 𝜇𝜇𝐸𝐸,𝜙𝜙|𝜀𝜀) = 𝑁𝑁𝑁𝑁(𝑦𝑦;𝜙𝜙, 𝜀𝜀𝜇𝜇𝐸𝐸)  (9) 

𝜀𝜀~𝐿𝐿𝑖𝑖𝐿𝐿𝐿𝐿𝑖𝑖𝑣𝑣𝑦𝑦(𝜃𝜃) 



5 
 

Where 𝜃𝜃 is the Lindley parameter. In addition to the three traditional NB models (NB1, NB2, 
NBP) described previously, the authors used data from Virginia to develop three NB-L models 
(NB1-L, NB2-L, and NBP-L) for each functional classification (6R, 7R, and 7U), as well as for 
all NFAS roads (as one group). 

Dispersion Structure  
Besides the variance structure, the over-dispersion parameter itself can affect the flexibility of the 
NB model. The over-dispersion parameter is the linkage between the mean and the variance of the 
NB model. Even though past studies assumed that the over-dispersion parameter is fixed and 
invariant of site characteristics, some research studies [12, 13] showed that the varying dispersion 
structure, as a function of factors such as AADT or segment length, provides a superior fit 
compared to the models with a fixed dispersion structure. In this regard, Geedipally and Lord 
analyzed 10 different functional forms of dispersion structure dependent upon segment length and 
AADT [14]. All of the aforementioned NB formulations were also developed and examined with 
different dispersion structures in line with the best structures found by [14]. 

FB Method 
All of the Virginia SPFs were developed in an FB framework. We set a non-informative normal 
prior for the coefficients of both mean function and dispersion structure. Also, as recommended 
by [11, 15], a Beta (N/3, N/2) distribution was chosen for a function of the θ parameter. The authors 
performed a Markov chain Monte Carlo analysis using three different chains, each containing 
50,000 draws from the joint posterior distribution. The first 10,000 draws, and two draws out of 
each three draws were ignored to ensure the convergence and independence of the samples. 

Step 2 – Sensitivity Analysis 
The authors performed a sensitivity analysis to examine the impact of AADT estimation errors on 
the expected crash frequencies estimated using the EB method and in some cases the FB method. 
The results from both methods were used to rank the sites. The sensitivity analysis included the 
following steps: 

• Step 1: Apply the EB method (for all Texas SPFs and for the traditional NB models for 
Virginia) to calculate the expected number crashes for each site. The EB method considers 
both the number of crashes predicted using SPFs, based on the average conditions of the 
group, along with the observed number of crashes at a given facility. The EB approach is 
based on a weighted average concept. Many studies use this method to develop localized 
SPFs for different facility and crash types [16-25]. The EB method improves the estimation 
precision by using a weight factor, w, to combine observed (CObserved) and predicted crash 
frequencies (CPredicted): 

CExpected = w × CPredicted + (1 − w) × CObserved  (10) 

w= 1
1+CPredicted×OP

 (11) 



6 
 

Where: 

w= a weight factor that depends on the over-dispersion parameter (OP) of the SPF 

OP = over-dispersion parameter (OP) 

CExpected = expected crash frequency 

CObserved = observed crash frequency 

Note that the EB method is an approximation to a more general framework, the FB method, 
which was used in the case of the NB-L models developed for Virginia. The FB method 
uses a posterior predictive distribution to calculate expected values in Bayesian inferences. 
The posterior predictive distribution is equivalent to the distribution of the future data given 
the existing data that have been used to develop a model. Expected crash frequencies from 
both the EB method (as described above) and the posterior predictive distribution of the 
NB-L distribution were calculated in Step 1. 

• Step 2: Rank the segments based on expected number of crashes. 

• Step 3: Determine rank percentile for each site. 

• Step 4: Increase the AADT of each segment by 10, 50, 100, 250 and 500 percent by keeping 
the rest of the variables and segments fixed.  

• Step 5: Repeat Steps 1–4 separately for each segment.  

• Step 6: Calculate the percentile rank change of each site by differentiating the original 
ranking (no AADT change) against the rank obtained when AADT was increased by a 
certain percent. 

The study data and the results of the analyses are described in the next section. 

Results 

Study Data 
DOT Data 
The authors assembled a comprehensive database of roadway, traffic volume, and crash data for 
NFAS roads in Texas and Virginia. Data were gathered for the five-year period of 2014–2018. 
Most of the datasets were downloaded online from public websites maintained by TxDOT and 
VDOT. Traffic volume data for Virginia were provided by VDOT staff. The traffic volume data 
were obtained from both permanent stations and STCs. To develop the database, the authors took 
the following steps.  

• Removed intersection and intersection-related crashes.  
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• Excluded missing records and outliers. For example, the researchers filtered out counts that 
were missing at least one of the following attributes: station ID, latitude, longitude, 
rural/urban designation, roadway functional class, and count type (i.e., permanent or short 
term). 

• Identified and excluded low-quality count data in the case of Virginia.  

• Excluded very short segments (segments length > 0.099 mi.). 

• Geolocated crashes on the state transportation networks and created a geodatabase in 
ArcGIS. 

• Determined the number of crashes on each segment by injury type and year and developed 
the final dataset. Note that the development of SPFs requires a comprehensive crash 
database with geocode crash location information or relevant route information, roadway 
type, injury type, collision type, and other relevant information.  The injury classification 
system, KABCO, used in this study divides crash severity into five major groups: 1) fatal 
injury (K), 2) incapacitating suspected serious injury (A), 3) non-incapacitating injury (B), 
4) possible injury (C), and 5) no injury or property damage only (O). 

It is worth stating that the dataset compiled for Virginia had significantly fewer attributes that 
could be used as independent variables to develop SPFs than the Texas dataset. Further, the sample 
size (i.e., number of segments) was much smaller, mainly due to the smaller size of Virginia’s 
transportation network.  

SLD Data 
The Texas Transportation Institute (TTI) downloaded 2017 AADT estimates for 10,000 roadway 
locations from SLD’s web-platform, Insight. SLD developed nearly all the analytics for estimating 
2017 AADT values at no cost to this research project. SLD follows three main steps to develop 
AADT estimates [26]: 

• Step 1: Process and combine GPS and location based services (LBS) data that SLD obtains 
from various data providers. 

• Step 2: Normalize GPS and LBS trip counts (derived from Step 1) using non-traffic data, 
such as U.S. census socioeconomic and demographic data. 

• Step 3: Calibrate the estimates developed in Step 2 using machine learning algorithms. 
SLD uses actual traffic volume data that public agencies collect primarily from continuous 
count stations that are permanently installed at select locations of the network. 

All passively collected data and the details of the traffic volume estimation models are the 
intellectual property of SLD and are considered confidential. 
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AADT Accuracy  
TTI compared SLD AADT estimates against permanent and short-term count data provided by the 
two DOTs. The AADT values extracted from permanent stations are typically considered to be 
representative of the actual traffic volumes, assuming the dataset is complete and free of erroneous 
values. Therefore, under certain circumstances, the AADT derived from permanent sites can be 
used for validation purposes. However, the AADTs derived from STCs have been estimated (not 
calculated) by applying one or more seasonal adjustment factors to the average daily traffic (ADT) 
of the counts. As a result, the short-duration AADT values have an inherent estimation error, which 
does not make them appropriate for validation purposes. In this study, they were merely used as a 
comparison device.  

The research team calculated the metrics presented in the Methodology section to compare DOT-
supplied AADT values against SLD AADT estimates. Table 1 shows these metrics aggregated by 
five traffic volume ranges that the authors developed based on DOT data. Table 5 of the appendix 
presents the results disaggregated by state and AADT range. Note that SLD did not produce AADT 
estimates that are less than 400 vehicles per day (vpd); therefore, the errors are high within the 
first volume range. As of the publication year of this report, SLD has made significant 
methodological improvements and is currently producing AADT estimates for all volume ranges, 
including low-volume roads (0–400 vpd). 

Table 1. Accuracy of SLD AADT Estimates by AADT Range 

 

The main findings related to the accuracy of AADT estimates are summarized below: 

• In general, the AADT accuracy gradually improves from lower to higher traffic volume 
roads.  

• The grand average Median APE is 77%; which nonetheless decreases to 25% when the 
first two volume groups are excluded from the analysis (i.e., AADT>2000 vpd).  

• SLD AADT estimates tend to be higher than DOT AADT values (i.e., positive mean signed 
difference) for the first four AADT ranges, but this trend is reversed for the last range 
(>10,000 vpd).  

AADT Range 
(vehicles/day)

Number of 
Records MSD MAD MAPE Median 

APE ACV

0–399 5,545         NA NA NA NA NA
400–1,999 3,484         757            768            118% 84% 40%
2,000–4,999 365            498            888            32% 25% 19%
5,000-9,999 59              211            1,989         32% 21% 19%
≥10,000 32              (3,324)       4,934         30% 33% 26%

Grand Total 9,485         691            831            108% 77% 38%
NA = Not applicable
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• The MAD gradually increases from low-volume roads to higher AADT roads. Not 
surprisingly, this finding is also observed when the MAD is aggregated by roadway 
functional class. 

The wide range of AADT estimation errors was used as an input to construct the sensitivity 
analysis described in the Methodology section.  

SPFs 
Texas SPFs – Decision Trees 
After performing a correlation analysis and determining variable importance measures, the 
segment length and AADT were found to be the best explanatory variables [27]. The decision trees 
developed in this study confirmed these findings. Figure 1 shows three decision trees developed 
for KABCO, KABC, and KAB crashes for rural minor collectors (6R) in Texas. In Figure 1a, the 
total number of KABCO crashes was used as the dependent variable of the decision tree. The 
independent variables included segment length (LEN_SEC), average daily traffic (ADT_CUR), 
shoulder width, and others. Figure 1(a) provides annotation of various statistics calculated during 
the development of the decision trees. A classification and regression tree (CRT) algorithm was 
applied to the dataset to determine the appropriate number of clusters. A maximum of three levels 
was used to limit the number of the final clusters. All the decision trees used in this study were 
validated by splitting the dataset into a training and a test dataset. This report only presents the 
results obtained for 6R roadways. For example, the decision rules generated for KABCO crashes 
on 6R roadways are: 

• Class 1 rule: LEN_SEC (Segment Length) < 1.3 and ADT_CUR (AADT in the current 
year) < 612 (mean crash frequency = 0.28 crashes/year per segment). 

• Class 2 rule: LEN_SEC < 1.3 and ADT_CUR ≥ 612 (mean crash frequency = 1 crash /year 
per segment) 

• Class 3 rule: LEN_SEC ≥ 1.3 and ADT_CUR < 331 (mean crash frequency = 0.8 
crashes/year per segment). 

• Class 4 rule: LEN_SEC ≥ 1.3 and ADT_CUR ≥ 331 (mean crash frequency = 3.3 
crashes/year per segment). 
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Figure 1. Decision trees for a) KABCO, b) KABC, and C) KAB crashes. 

For rural minor collectors in Texas, there were 11,212 segments with available AADT data. lists 
the SPFs developed for the three crash severity groups (KABCO, KABC, and KAB) and the 
clusters created from the decision trees. The table shows the model equation along with the 
overdispersion parameter (𝑏𝑏), and the loglikelihood of each model.  
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Table 2. SPFs (NB Models) for 6R in Texas 

Crash 
Severity 
Group 

Class Safety Performance Functions 
Over-

Dispersion 
Parameter 

Log-
likelihood 

KABCO Class 1 
Rule: All Data 

𝑁𝑁6𝑅𝑅,𝐸𝐸𝐷𝐷𝐸𝐸,𝐸𝐸𝑎𝑎𝑎𝑎 = 𝑣𝑣𝑒𝑒𝑒𝑒(−4.759) × 𝐿𝐿𝑣𝑣𝐿𝐿𝐿𝐿𝐿𝐿ℎ0.900 × 𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴0.766 1.3075 -22215.077 

KABCO 
Class 2 

Rule: LEN_SEC < 1.3 & ADT_CUR < 612 
𝑁𝑁6𝑅𝑅,𝐸𝐸𝐷𝐷𝐸𝐸,𝑐𝑐𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸1 = 𝑣𝑣𝑒𝑒𝑒𝑒(−4.170) × 𝐿𝐿𝑣𝑣𝐿𝐿𝐿𝐿𝐿𝐿ℎ0.898 × 𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴0.658 0.8020 -7317.370 

KABCO 
Class 3 

Rule: LEN_SEC < 1.3 & ADT_CUR > 611 
𝑁𝑁6𝑅𝑅,𝐸𝐸𝐷𝐷𝐸𝐸,𝑐𝑐𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸2 = 𝑣𝑣𝑒𝑒𝑒𝑒(−4.298) × 𝐿𝐿𝑣𝑣𝐿𝐿𝐿𝐿𝐿𝐿ℎ0.958 × 𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴0.699 1.3710 -3676.017 

KABCO 
Class 4 

Rule: LEN_SEC > 1.2 & ADT_CUR < 331 
𝑁𝑁6𝑅𝑅,𝐸𝐸𝐷𝐷𝐸𝐸,𝑐𝑐𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸3 = 𝑣𝑣𝑒𝑒𝑒𝑒(−4.627) × 𝐿𝐿𝑣𝑣𝐿𝐿𝐿𝐿𝐿𝐿ℎ0.764 × 𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴0.756 0.9225 -6036.538 

KABCO 
All 

Rule: LEN_SEC > 1.2 & ADT_CUR > 331 
𝑁𝑁6𝑅𝑅,𝐸𝐸𝐷𝐷𝐸𝐸,𝑐𝑐𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸4 = 𝑣𝑣𝑒𝑒𝑒𝑒(−4.606) × 𝐿𝐿𝑣𝑣𝐿𝐿𝐿𝐿𝐿𝐿ℎ0.832 × 𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴0.763 2.129 -5071.186 

KABC Class 1 
Rule: All Data 

𝑁𝑁6𝑅𝑅,𝑘𝑘𝐸𝐸𝑂𝑂𝑐𝑐,𝐸𝐸𝑎𝑎𝑎𝑎 = 𝑣𝑣𝑒𝑒𝑒𝑒(−5.636) × 𝐿𝐿𝑣𝑣𝐿𝐿𝐿𝐿𝐿𝐿ℎ0.940 × 𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴0.736 1.2247 -12386.275 

KABC 
Class 2 

Rule: LEN_SEC < 1.2 
𝑁𝑁6𝑅𝑅,𝑘𝑘𝐸𝐸𝑂𝑂𝑐𝑐,𝑐𝑐𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸1 = 𝑣𝑣𝑒𝑒𝑒𝑒(−5.335) × 𝐿𝐿𝑣𝑣𝐿𝐿𝐿𝐿𝐿𝐿ℎ0.953

× AADT0.686 
1.035 -5141.116 

KABC 
Class 3 

Rule: LEN_SEC > 1.1 & ADT_CUR < 208 
N6R,kabc,class2 = exp(−5.323) × Length0.649937

× AADT0.649 
0.4449 -2459.781 

KABC 
Class 4 

Rule: LEN_SEC > 1.1 & 207 < ADT_CUR < 441 
N6R,kabc,class3 = exp(−4.043) × Length1.023 × AADT0.446 1.191 -1954.343 

KABC 
All 

Rule: LEN_SEC > 1.1 & ADT_CUR > 440 
N6R,kabc,class4 = exp(−4.707) × Length0.688 × AADT0.639 2.518 -2738.366 

KAB Class 1 
Rule: All Data 

N6R,kab,all = exp(−5.949) × Length0.960 × AADT0.719 1.259 -9630.336 

KAB 
Class 2 

Rule: LEN_SEC < 1.3 
N6R,kab,class1 = exp(−5.846) × Length0.945 × AADT0.699 0.961 -4002.588 

KAB 
Class 3 

Rule: LEN_SEC > 1.2 & ADT_CUR < 343 
N6R,kab,class2 = exp(−6.169) × Length0.963 × AADT0.756 0.654 -2893.847 

KAB 
Class 4 

Rule: 1.2 < LEN_SEC < 2.5 & ADT_CUR > 342 
N6R,kab,class3 = exp(−5.401) × Length0.858 × AADT0.649 3.420 -1552.351 

KAB All Rule: LEN_SEC > 2.5 & ADT_CUR > 342 
N6R,kab,class4 = exp(−3.999) × Length0.619 × AADT0.501 1.935 -1137.224 

 

As mentioned earlier, regression models examine the mean effects of the explanatory variables 
and ignore subclass effects in the entire population of all segments. This study applied decision 
trees to determine the subclass effect in the dataset. As the current model is completely based on 
the rural minor collector roadways in Texas, transferability of these models to other states should 
be carefully considered. The R2 values range from 0.18 to 0.22 for all data (without splitting) for 
different injury level models. The prediction accuracies are improved in the decision tree-based 
models. For different class-specific models (based on injury levels), the R2 values range from 0.25 



12 
 

to 0.41. To understand the goodness-of-fit, another quick diagnostic is the development of 
Cumulative Residual (CURE) plots. Residuals indicate the disparities between historical crash 
frequencies and predicted crash frequencies. Model fitting can be performed by examining the 
residuals. If the surrounding residuals of a model are close to zero, the model can be considered as 
a good-fit model. The CURE plot is a good visualization tool to examine the SPF predictions based 
on the individual explanatory variables used in the model. A horizontal stretch of the CURE plot 
infers to a region of the variable where the estimates are unbiased [28]. On the contrary, in 
locations where the CURE plot drifts up or down significantly, the estimates are not considered to 
be unbiased. The CURE plot for an unbiased SPF must be within the boundaries of two standard 
deviations [28]. 

Figure 2 shows the CURE plots for the SPFs developed using KABCO crashes. There are five 
CURE plots on each side of the figure. The CURE plots on the left side show the segment length 
on the horizontal axis, whereas those on the right side show the AADT on the x-axis.  

 

Figure 2. CURE plots for KABCO model.  

Examining the projections of the residuals of each plot shows the improved performance measures 
of the class-based models—those developed based on the decision trees. A comparison between 
the CURE plots of the main models and those of the rules-based models indicates that the rules-
based models are, for the most part, inside the confidence boundaries. For example, in Figure 2(a) 
the residual (red) line of the main KABCO model is outside of the confidence boundary in two 
zones, whereas the residual lines of the class-based models are, for the most part, within then 
confidence boundaries. This may also be due to the small sample size of the long segments in the 
database. The CURE plots for other models (not shown in this report) have similar trends. This 
example clearly shows the effectiveness of rules-based modeling in generating more robust SPFs. 
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Figure 3 shows the predicted KAB crash counts by the developed SPFs for different AADT values. 
It shows that predicted crashes in Class 4 differ from the rest. Similar plots for KABCO and KABC 
crashes are listed in the appendix (Figure 9 and Figure 10).  

 

Figure 3. Predicted KAB crashes by SPFs. 

Virginia SPFs – Different Functional Forms and Structures 
As previously explained, in addition to decision trees, the authors explored how the functional 
form and (variance and dispersion) structures of SPFs can improve the latter’s performance. 
Initially, a global SPF was developed for all three functional classes treated as one group. All six 
NB formulations were modeled with a fixed structure as well as four different dispersion structures 
to find the best model. The results of the generated SPFs that have a fixed dispersion parameter 
are provided in Table 3. The remaining results of the SPFs with non-fixed structures are provided 
in Table 6 and  

Table 8 in the appendix.  

Table 3. Model estimation results (fixed dispersion parameter) for all NFAS roads 

Dispersion 
Structure 

NB-1 – 
Fixed 

NB-2 – 
Fixed 

NB-P – 
Fixed 

NB1-L – 
Fixed 

NB2-L – 
Fixed 

NBP-L – 
Fixed 

Intercept (𝜷𝜷𝒆𝒆) -5.08 (0.19) -5.06 (0.20) -4.99 (0.20) -5.06 (0.24) -5.11 (0.25) -5.37 (0.27) 
Ln(AADT) (𝜷𝜷𝒆𝒆) 0.73 (0.02) 0.73 (0.03) 0.73 (0.03) 0.72 (0.07) 0.73 (0.07) 0.76 (0.06) 

Length (𝜷𝜷𝒆𝒆) 0.77 (0.02) 0.77 (0.02) 0.66 (0.02) 0.73 (0.02) 0.74 (0.02) 0.87 (0.03) 
P - - 2.23 (0.11) - - 0.11 (0.10) 

WAIC 8833 8725 8723 8315 8477 8471 
LOO 8832 8725 8723 8678 8696 8559 

MASE 0.67 0.62 0.61 0.22 0.23 0.33 
MSPE 12.99 7.95 6.81 0.66 0.71 3.44 

Log-Likelihood -4413 -4360 -4361 -3655 -3711 -3679 

The results showed that a) models with a varying dispersion structure outperformed models with 
a fixed dispersion parameter, and b) the appropriate dispersion structure depends on the NB 
formulation being used. The NB-L family models (NB1-L, NB2-L, and NBP-L) performed better 
with a length-only dependent dispersion structure. However, traditional NB models (NB1, NB2, 
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and NBP) showed a better performance when modeled with length and an AADT dependent 
dispersion structure. In the next step, six different models, each with the appropriate dispersion 
structure found in the previous step, were developed and examined for each classification, 
separately. The coefficient estimates and performance metric of the 6R model are provided in 
Table 4. The results of the 7R and 7U models are shown in Table 10 and Table 11 of the appendix.  

Along with other commonly used metrics, two fully Bayesian metrics, widely applicable 
information criterion (WAIC) and leaving one out (LOO) cross-validation, were chosen for 
performance evaluation. WAIC was proven to perform better than DIC, especially in a hierarchical 
setting [29].  

Table 4. Model Estimation Results for Rural Minor Collectors 

Dispersion 
Structure 

∅𝒊𝒊 = 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊
𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊

𝒆𝒆𝒆𝒆 
NB-1 

∅𝒊𝒊 = 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊
𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊

𝒆𝒆𝒆𝒆 
NB-2 

∅𝒊𝒊 = 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊
𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊

𝒆𝒆𝒆𝒆 
NB-P 

∅𝒊𝒊 = 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊
𝒆𝒆𝒆𝒆 

NB1-L 
∅𝒊𝒊 = 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊

𝒆𝒆𝒆𝒆 
NB2-L 

∅𝒊𝒊 = 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊
𝒆𝒆𝒆𝒆 

NBP-L 
Intercept 

(𝜷𝜷𝒆𝒆) 
-4.88 (0.20) -4.89 (0.21) -4.88 (0.22) -4.70 

(0.31) 
-4.81 
(0.32) 

-5.01 
(0.35) 

Ln(AADT) 
(𝜷𝜷𝒆𝒆) 

0.81 (0.04) 0.79 (0.04) 0.78 (0.03) 0.71 
(0.12) 

0.73 
(0.12) 

0.78 
(0.12) 

Length (𝜷𝜷𝒆𝒆) 0.46 (0.01) 0.48 (0.01) 0.53 (0.02) 0.60 
(0.02) 

0.57 
(0.02) 

0.54 
(0.03) 

               𝒆𝒆𝒆𝒆 4.22 (0.88) -0.29 (0.83) -7.41 (1.13) 5.91 
(1.27) 

4.71 
(0.82) 

5.81 
(0.61) 

               𝒆𝒆𝒆𝒆 -0.69 (0.13) 0.15 (0.12) 1.53 (0.19) - - - 

               𝒆𝒆𝒆𝒆 0.79 (0.14) 1.15 (0.11) 2.25 (0.15) 4.32 
(0.84) 

3.71 
(0.53) 

4.01 
(0.49) 

P - - 3.74 (0.18) - - 3.77 (0.2) 
WAIC 6199 6161 6123 5753 5762 5784 
LOO 6198 6161 6123 6123 6136 6124 

According to the results, the NB-L family models provide a superior fit in comparison to the 
traditional NB models. In all functional classifications, almost all the performance evaluation 
metrics favored the NB-L models over the traditional NB models. The majority of roadways 
(56%) experienced less than two crashes during the five years of the analysis and the crash data 
are highly skewed (skewness > 2.8 for all classifications). These results are in line with previous 
research findings [11], according to which NB-L models provide a better fit in cases of excess 
zeros and long tails in crash distributions.  

No considerable improvements were observed when using different variance structures. In rural 
minor collector SPF results, models with less flexible variance structures (i.e., NB1, and NB1-L) 
slightly outperformed their counterparts. In rural and urban local SPFs models, however, there 
were no significant differences between models with different variance structures. Adjusted 
cumulative residual plots are also provided to better represent the superiority of NB-L family 
models over traditional NB models. Figure 4 shows CURE plots for 6R, 7R, and 7U, respectively. 
Each figure includes six plots corresponding to the six SPF models. The confidence intervals are 
depicted by a dashed line of the same color as the corresponding residual line. The results show 
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that NB-L models have narrower confidence intervals and less periodicity compared to the 
traditional NB models.  
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Figure 4. CURE plots for AADT. 
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Safety Impact Analysis 
The purpose of this analysis was to determine whether and how AADT errors can affect the results 
of data-driven safety analysis, such as the final ranking of roadway segments sorted based on their 
safety risk. The sensitivity analysis was separately conducted for the decision tree-based SPFs 
developed for Texas, as well as for the NB-L-based SPFs developed for Virginia. Figure 5 shows 
the rank percentile changes in a box-violin format for five different AADT groups (illustrated in 
different colors), and five AADT percent increases starting with 10% (upper part) all the way to 
500% percent (bottom part).  

 
Figure 5. Sensitivity analysis results for 6R KABCO models. 

These results were produced from the SPFs developed for KABCO crashes on 6R roadways in 
Texas. The figure shows that a 10% increase in AADT does not have a substantial effect on the 
expected crash frequencies and associated percentile rank changes. Higher percent increases in 
AADT result in slightly higher percentile rank changes; however, the latter are not proportional to 
the AADT percent increase. For example, the highest percentile rank changes were approximately 
4% and were obtained when the AADT was increased by 500% (bottom part of Figure 5). The 
magnitude of this impact depends on several factors, such as the AADT coefficients of the SPFs 
(the smaller the coefficients, the smaller the impact), the sample size of the network (the bigger 
the network, the smaller the impact), and the overdispersion parameter (the higher the parameter, 
the smaller the impact), among others. 
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Figure 6 shows the rank percentile changes obtained from the EB method (three plots on the left) 
and the FB method (three plots on the right) that used the Virginia SPFs developed for 6R, 7R, 
and 7U.  

 

Figure 6. Rank percentile change using expected crash values from different methods (6R). 

As illustrated in the legend of the figure, the five colored violin plots correspond to the five AADT 
percent increases: 10, 20, 50, 100, 200, and 500%. The results show that the NB-L method tends 
to be more sensitive (i.e., higher percentile rank changes) to AADT increases compared to the EB 
method. Note that the majority (96%) of the rank percentile changes that are greater than 20% are 
due to sites that had fewer than five crashes during the five-year study period. In general, the 
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percentile rank changes are significantly higher compared to those obtained for Texas (Figure 5). 
This can be partially attributed to the small size of the Virginia network and the NB-L models, 
which tend to be more sensitive to AADT changes than the traditional SPFs. 

Conclusions and Recommendations 
This study aimed to a) determine the accuracy of AADT estimates developed from alternative data 
sources, and b) quantify the impact of AADT estimation errors on data-driven safety analysis such 
as the EB method that uses SPFs. To address the first objective, the research team compared AADT 
values provided by TxDOT and VDOT against AADT estimates supplied by a third-party data 
vendor, StreetLight Data Inc., that develops various traffic products using a combination of traffic, 
probe, census, and other data. The comparison revealed that the median APE for roads with AADT 
greater than 2000 vpd is approximately 25%. The AADT accuracy gradually improves from lower 
to higher traffic volume roads. SLD tends to overestimate AADT within lower volume ranges (0-
10,000 vpd) and underestimate it for roads that have an AADT higher than 10,000 vpd.  

As the use of mobile devices continues to increase by the driving public and data providers 
continue to improve their analytical methods, the accuracy of AADT estimates is expected to 
increase. For example, the 2017 AADT estimates used in this project resulted in lower errors than 
those reported in a 2017 report that evaluated 2015 AADT estimates [26]. In 2020, MnDOT re-
evaluated 2019 SLD estimates and found that the mean absolute error ranged from 8% to 10% for 
locations greater than 10,000 AADT and gradually increased to 42% for sites with less than 1,000 
AADT [30]. Future evaluations of probe-based AADT estimates are needed using data from 
different states and regions that potentially have diverse traffic, geometric, demographic, 
socioeconomic, and weather characteristics. The ongoing FHWA pooled fund study “Independent 
Evaluation of Non-Traditional Methods to Obtain Annual Average Daily Traffic” is expected to 
shed light on this topic [31]. 

AADT estimates developed from alternative data sources can yield several benefits, such as time 
and cost savings by eliminating the need to conduct short-term counts and purchase and maintain 
expensive traffic equipment. These estimates could also reduce safety risks to employees and 
contractors who go out in the field to install sensor devices in and on roadways. Further, AADT 
estimates from alternative data sources can assist agencies in meeting new federal requirements 
mandating that states must have access to a series of data elements, including AADT, for all public 
paved roads by 2026. 

To address the second study objective, the research team developed several SPFs for NFAS roads 
in Texas and Virginia, and then performed an extensive sensitivity analysis. A procedure was 
developed for using local roadway network data in estimating crash frequencies. The goodness-
of-fit measures showed that the decision tree rule-based SPFs performed better than traditional 
SPFs in Texas.  
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Using data from Virginia, the study examined different functional forms and (variance and 
dispersion) structures of SPFs. The results revealed that the choice of the model formulation is of 
high importance in SPF development. The functional form of a model should match with the 
underlying data characteristics. Using mixture distributions, such as the NB-L and modifying 
variance and dispersion structures, allows different ways of introducing more flexibility into the 
model. We concluded that NB-L models provide a better fit when developing SPFs for NFAS 
roads. Also, the dispersion structure is highly dependent upon the underlying NB formulation. 
Different variance structures did not considerably change the model performance; however, in 
highly skewed datasets, flexible variance structures can provide more flexibility to the model. 
Inclusion of other variables considering different crash severity levels or crash types can further 
improve the proposed models. 

The sensitivity analysis was performed to investigate the impact of AADT on the expected number 
of crash frequencies, and hence the impact on the final ranking of segments sorted by safety risk. 
The results suggest that higher-volume roads experience higher percentile rank changes compared 
to lower AADT roadway groups. Higher percent increases in AADT result in slightly higher 
percentile rank changes; however, the latter are not proportional to the AADT percent increase. 
The magnitude of this impact depends on several factors, such as the AADT coefficients of the 
SPFs (the smaller the coefficients, the smaller the impact), the sample size of the network (the 
bigger the network, the smaller the impact), and the overdispersion parameter (the higher the 
parameter, the smaller the impact), among others. We also observed that sites with low crash 
frequencies (e.g., one crash per year) are more sensitive to AADT increases than sites that exhibit 
more crashes. Overall, the NB-L models are much more flexible and tend to produce lower bias 
and therefore high variances, which in turn means that these models are more sensitive to any 
change in the data or the model parameters. On the other hand, as the expected values in the NB-
L models comes from a full Bayesian procedure, both the expected values and their ranking are 
more reliable and more accurate than the ones derived from the EB method. As a conclusion, the 
trade-off between the sensitivity and reliability of the expected crash values needs to be accounted 
for before developing SPFs. 

Additional Products 
The Education and Workforce Development (EWD) and Technology Transfer (T2) products 
created as part of this project are described below and are listed on the Safe-D website here. The 
final project dataset is located on the Safe-D Dataverse. 

Education and Workforce Development Products 
Undergraduate and graduate courses: 

• TTI/Texas A&M: CVEN 626 – Highway Safety (Fall 2021): Some of the material will be 
included in the slides and class notes for the graduate course CVEN 626. At the time this 

https://safed.vtti.vt.edu/projects/use-of-disruptive-technologies-to-support-safety-analysis-and-meet-new-federal-requirements/
https://dataverse.vtti.vt.edu/dataset.xhtml?persistentId=doi:10.15787/VTT1/HMQZOE
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report was written, the class notes had not been yet updated. They will be made available 
on Dr. Lord’s website. 

• TTI/Texas A&M: Some of the material has been included in Chapter 2 of the forthcoming 
textbook titled "Highway Safety Analytics and Modeling" co-written by Dr. Dominique 
Lord that will be published on March 1, 2021.  

• UTC presentations: One presentation for the public will be hosted by the Safe-D UTC 
sometime in the spring of 2021.  

Student Funding and Enrichment: 

• TTI – one Ph.D. student, Ali Khodadadi, at the Texas A&M University. Title of dissertation 
to be determined. Status: anticipated December, 2021. 

• TTI – one undergraduate student, Jessica Morris, at the University of Texas San Antonio. 

For Ali Khodadadi, the project has been very beneficial. This project allowed Ali to enhance his 
knowledge in safety analysis and statistics, learn new programming languages, and publish papers. 
Jessica Morris learned how to assemble different types of traffic and roadway data, perform data 
quality control checks, process and analyze data in ArcGIS, link databases, and download data 
from SLD’s Insight tool. 

Technology Transfer Products 
The main technology transfer products from this study include the following: 

• New SPFs for NFAS roads that TxDOT and VDOT can use in data-driven safety analysis.  

• Webinar – At the conclusion of this project, the researchers will conduct a webinar to 
present the methodology and project findings to students and stakeholders.  

• Conference Paper – The research team prepared a conference paper that will be presented 
at the 100th Transportation Research Board annual meeting in 2021.  

• Journal Article – The research team will prepare at least two more papers, which will be 
submitted to peer-reviewed transportation journals. 

Data Products  
The research team uploaded to the Safe-D Dataverse two databases (Texas_SPF_Data and 
Virginia_SPF_Data) along with their metadata for Texas and Virginia, respectively. The two 
datasets contain geometric (e.g., segment length, lane width, shoulder width), traffic volume, and 
crash counts for five years and different severity levels for NFAS roads in Texas and Virginia. The 
metadata describe the data, including the source, description and coding of categorical variables, 
and number of missing values.  

https://ceprofs.civil.tamu.edu/dlord/
https://dataverse.vtti.vt.edu/dataset.xhtml?persistentId=doi:10.15787/VTT1/HMQZOE
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Appendix: Additional Analysis Results 
 

This appendix includes various results from the analyses conducted in the study. 

Table 5. Accuracy of StreetLight AADT Estimates by State and AADT Range 

 

 

  
(a) Segment Length (b) AADT 

Figure 7. CURE plots for KABC model. 

State AADT Range 
(vehicles/day)

Number of 
Records MSD MAD MAPE Median 

APE ACV

0–399 4,009         NA NA NA NA NA
400–1,999 1,658         696            706            103% 79% 38%
2,000–4,999 192            641            834            31% 25% 17%
5,000-9,999 28              874            2,527         43% 18% 22%
≥10,000 16              (1,838)       4,202         25% 28% 21%
0–399 1,536         NA NA NA NA NA
400–1,999 1,826         812            824            132% 89% 42%
2,000–4,999 173            339            948            34% 26% 20%
5,000-9,999 31              (387)          1,503         23% 25% 17%
≥10,000 16              (4,810)       5,666         35% 37% 31%

9,485         691            831            108% 77% 38%Grand Total

Texas

Virginia

NA = Not applicable
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(a) Segment Length (b) AADT 
Figure 8. CURE plots for KAB model. 
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Figure 9. Predicted KABCO crashes (Texas SPFs) against AADT. 

 
Figure 10. Predicted KABC crashes (Texas SPFs) against AADT. 

 

Table 6. Model Estimation Results (Length and AADT Dependent Dispersion Structure ) for All NFAS 
Roads: Dispersion Structure ∅𝒊𝒊 = 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊

𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊
𝒆𝒆𝒆𝒆 

 NB-1 NB-2 NB-P NB1-L NB2-L NBP-L 
Intercept (𝜷𝜷𝒆𝒆) -4.89 (0.19) -4.80 (0.18) -4.91 (0.20) -4.79 (0.26) -4.84 (0.25) -4.80 (0.27) 

Ln(AADT) (𝜷𝜷𝒆𝒆) 0.77 (0.03) 0.77 (0.03) 0.77 (0.03) 0.74 (0.08) 0.73 (0.07) 0.75 (0.08) 
Length (𝜷𝜷𝒆𝒆) 0.56 (0.02) 0.50 (0.01) 0.58 (0.02) 0.59 (0.03) 0.62 (0.02) 0.56 (0.03) 

𝒆𝒆𝒆𝒆 -5.83 (0.64) -1.98 (0.63) -7.87 (0.85) -2.70 (1.90) 0.90 (1.94) -5.57 (1.95) 
𝒆𝒆𝒆𝒆 1.15 (0.10) 0.40 (0.09) 1.56 (0.15) 1.17 (0.29) 0.58 (0.29) 1.69 (0.30) 
𝒆𝒆𝒆𝒆 1.72 (0.06) 1.25 (0.07) 2.12 (0.12) 3.36 (0.30) 3.25 (0.36) 3.73 (0.33) 

P - - 3.61 (0.16) - - 0.068 (0.07) 
WAIC 8448 8509 8438 7914 7910 7938 
LOO 8448 8509 8438 8401 8426 8293 

MASE 0.56 0.56 0.57 0.21 0.20 0.24 
MSPE 5.57 5.09 5.87 0.60 0.52 0.74 

Log-Likelihood -4221 -4251 -4215 -3519 -3503 -3538 
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Table 7. Model Estimation Results (Length and AADT Dependent Dispersion Structure) for All NFAS 
Roads: Dispersion Structure ∅𝒊𝒊 = 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊

𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊 

 NB-1 NB-2 NB-P NB1-L NB2-L NBP-L 
Intercept (𝜷𝜷𝒆𝒆) -4.94 (0.20) -4.86 (0.19) -4.90 (0.19) -5.3 (0.30) -5.20 (0.27) -5.03 (0.25) 

Ln(AADT) (𝜷𝜷𝒆𝒆) 0.75 (0.03) 0.7 (0.03) 0.76 (0.03) 0.77 (0.08) 0.76 (0.07) 0.73 (0.07) 
Length (𝜷𝜷𝒆𝒆) 0.63 (0.02) 0.53 (0.01) 0.56 (0.02) 0.74 (0.03) 0.69 (0.03) 0.69 (0.02) 

𝒆𝒆𝒆𝒆 -2.55 (0.70) -1.48 (0.61) -2.12 (0.66) 2.33 (5.28) 6.15 (3.13) 4.98 (2.56) 
𝒆𝒆𝒆𝒆 0.65 (0.11) 0.32 (0.09) 0.45 (0.11) 0.21 (0.76) -0.56 (0.45) -0.44 (0.38) 
𝒆𝒆𝒆𝒆 - - - - - - 

P - - 1.77 (0.11) - - 3.12 (0.31) 
WAIC 8584 8520 8519 8220 8110 8068 
LOO 8584 8520 8518 8631 8565 8578 

Mean Absolute 
Scaled Error 

0.57 0.55 0.55 0.25 0.20 0.19 

Mean Squared 
Prediction Error 

6.51 5.19 5.40 1.43 0.55 0.50 

Log-Likelihood -4289 -4257 -4255 -3650 -3605 -3548 
 

Table 8. Model Estimation Results (Length only Dependent Dispersion Structure) for All NFAS Roads: 
Dispersion Structure ∅𝒊𝒊 = 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊

𝒆𝒆𝒆𝒆 

 NB-1 NB-2 NB-P NB1-L NB2-L NBP-L 
Intercept (𝜷𝜷𝒆𝒆) -4.80 (0.19) -4.87 (0.18) -4.88 (0.18) -5.01 (0.25) -4.95 (0.25) -5.05 (0.27) 

Ln(AADT) (𝜷𝜷𝒆𝒆) 0.76 (0.03) 0.78 (0.03) 0.78 (0.04) 0.77 (0.07) 0.75 (0.07) 0.78 (0.08) 
Length (𝜷𝜷𝒆𝒆) 0.55 (0.02) 0.50 (0.01) 0.51 (0.02) 0.60 (0.03) 0.62 (0.02) 0.59 (0.03) 

𝒆𝒆𝒆𝒆 1.67 (0.08) 0.61 (0.07) 0.80 (0.16) 5.14 (0.58) 4.170(0.70) 6.15 (0.56) 
               𝒆𝒆𝒆𝒆 - - - - - - 
               𝒆𝒆𝒆𝒆 1.56 (0.07) 1.21 (0.07) 1.27 (0.08) 3.44 (0.31) 3.2 (0.34) 3.91 (0.33) 

P - - 1.81 (0.16) - - 0.13 (0.12) 
WAIC 8549 8522 8523 7920 7913 7920 
LOO 8549 8522 8523 8396 8411 8384 

MASE 0.55 0.56 0.56 0.21 0.20 0.22 
MSPE 5.35 5.1 5.13 0.62 0.53 0.70 

Log-Likelihood -4271 -4257 -4257 -3518 -3505 -3514 
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Table 9. Model Estimation Results (Length only Dependent Dispersion Structure) for All NFAS Roads: 
Dispersion Structure ∅𝒊𝒊 = 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊 

 NB-1 NB-2 NB-P NB1-L NB2-L NBP-L 
Intercept (𝜷𝜷𝒆𝒆) -4.87 (0.20) -4.92 (0.19) -4.91 (0.19) -5.40 (0.26) -5.09 (0.25) -4.95 (0.25) 

Ln(AADT) (𝜷𝜷𝒆𝒆) 0.74 (0.03) 0.78 (0.03) 0.78 (0.03) 0.79 (0.07) 0.75 (0.08) 0.72 (0.07) 
Length (𝜷𝜷𝒆𝒆) 0.62 (0.02) 0.53 (0.01) 0.53 (0.02) 0.73 (0.02) 0.69 (0.02) 0.69 (0.02) 

               𝒆𝒆𝒆𝒆 1.68 (0.08) 0.57 (0.06) 0.53 (0.13) 3.61 (0.30) 2.23 (0.24) 2.02 (0.25) 
               𝒆𝒆𝒆𝒆 - - - - - - 
               𝒆𝒆𝒆𝒆 - - - - - - 

P - - 2.04 (0.12) - - 3.07 (0.30) 
WAIC 8615 8529 8529 8214 8120 9070 
LOO 8615 8528 8528 8623 8577 8572 

MASE 0.56 0.55 0.56 0.25 0.20 0.19 
MSPE 6.10 5.16 5.15 1.52 0.56 0.49 

Log-Likelihood -4305 -4262 -4262 -3469 -3616 -3551 
Mean Absolute 

Scaled Error 
0.54 0.53 0.54 0.15 0.16 0.18 

Mean Squared 
Prediction Error 

6.75 6.75 7.10 0.45 0.52 0.77 

Log-Likelihood -3095 -3077 -3058 -2536 -2555 -2574 
 

Table 10. Model Estimation Results for Urban Local Roads 

Dispersion 
Structure ∅𝒊𝒊 = 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊

𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊
𝒆𝒆𝒆𝒆 ∅𝒊𝒊 = 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊

𝒆𝒆𝒆𝒆 

 NB-1 NB-2 NB-P NB1-L NB2-L NBP-L 
Intercept (𝜷𝜷𝒆𝒆) -3.32 (0.69) -3.34 (0.67) -3.31 (0.67) -3.34 (0.75) -3.36 (0.76) -3.36 (0.76) 

Ln(AADT) (𝜷𝜷𝒆𝒆) 0.45 (0.10) 0.44 (0.10) 0.44 (0.10) 0.45 (0.12) 0.44 (0.18) 0.48 (0.23) 
Length (𝜷𝜷𝒆𝒆) 0.85 (0.09) 0.98 (0.16) 0.93 (0.16) 1.02 (0.16) 1.06 (0.18) 1.05 (0.18) 

               𝒆𝒆𝒆𝒆 -1.12 (2.38) -0.48 (2.11) 0.42 (2.57) 4.16 (1.83) 4.70 (1.75) 4.58 (1.88) 
               𝒆𝒆𝒆𝒆 -0.21 (0.33) 0.16 (0.30) -0.02 (0.42) - - - 
               𝒆𝒆𝒆𝒆 -0.43 (0.44) 0.10 (0.37) -0.06 (0.64) -1.22 (1.86) -0.89 (1.73) -1.0 (1.81) 

P - - 1.63 (0.80) - - 1.51 (1.04) 
WAIC 880 880 881 813 813 815 
LOO 880 880 882 859 860 860 

Mean Absolute 
Scaled Error 0.68 0.71 0.70 0.32 0.33 0.33 

Mean Squared 
Prediction Error 2.79 4.31 3.42 0.62 0.95 0.82 

Log-Likelihood -437 -437 -437 -350 -351 -351 
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Table 11. Model Estimation Results for Rural Local Roads 

Dispersion 
Structure ∅𝒊𝒊 = 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊

𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊
𝒆𝒆𝒆𝒆 ∅𝒊𝒊 = 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒊𝒊

𝒆𝒆𝒆𝒆 

 NB-1 NB-2 NB-P NB1-L NB2-L NBP-L 
Intercept (𝜷𝜷𝒆𝒆) -3.89 (0.58) -4.04 (0.68) -3.81 (0.85) -3.68 (0.78) -3.80 (0.81) -3.77 (0.84) 

Ln(AADT) (𝜷𝜷𝒆𝒆) 0.51 (0.08) 0.53 (0.09) 0.51 (0.12) 0.51 (0.24) 0.52 (0.24) 0.51 (0.24) 
Length (𝜷𝜷𝒆𝒆) 0.75 (0.06) 0.77 (0.08) 0.71 (0.09) 0.69 (0.08) 0.67 (0.08) 0.68 (0.08) 

               𝒆𝒆𝒆𝒆 14.54 (4.22) 9.88 (5.15) 0.76 (6.08) 4.66 (1.52) 4.79 (1.46) 4.98 (1.51) 
               𝒆𝒆𝒆𝒆 -1.84 (0.59) -1.18 (0.69) 0.15 (0.88) - - - 

𝒆𝒆𝒆𝒆 -3.73 (0.89) -1.63 (1.01) 1.09 (1.41) 3.23 (1.53) 3.66 (1.35) 3.55 (1.58) 
P - - 3.16 (0.59) - - 1.81 (1.10) 

WAIC 981 983 985 900 902 903 
LOO 981 984 985 952 960 954 

Mean Absolute 
Scaled Error 0.67 0.69 0.66 0.23 0.24 0.24 

Mean Squared 
Prediction Error 7.45 8.68 6.77 0.38 0.40 0.40 

Log-Likelihood -487 -486 -484 -394 -397 -396 
 


	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Methodology
	AADT Accuracy Measures
	Safety Impact Analysis
	Step 1 – SPF Development
	SPFs for Texas – Traditional NB Models With and Without Decision Trees
	SPFs for Virginia – Traditional and Non-Traditional NB Models Using FB Method
	Functional Form of Traditional NB Models Using FB Method
	Negative Binomial Lindley Models Using FB Method
	Dispersion Structure
	FB Method


	Step 2 – Sensitivity Analysis


	Results
	Study Data
	DOT Data
	SLD Data

	AADT Accuracy
	SPFs
	Texas SPFs – Decision Trees
	Virginia SPFs – Different Functional Forms and Structures

	Safety Impact Analysis

	Conclusions and Recommendations
	Additional Products
	Education and Workforce Development Products
	Technology Transfer Products
	Data Products

	References
	Appendix: Additional Analysis Results



